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Experiments on the lift and drag of spheres suspended 
in a Poiseuille flow 
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An experimental investigation of the fluid dynamic forces on spheres suspended 
in a Poiseuille flow was performed. Small spheres of polystyrene, nylon, and 
Lucite, having diameters ranging from 0.061 in. to 0.126 in. were suspended in 
Poiseuille flows in a 0.419in. diameter tube. Variations in particle size and 
density, the fluid properties, and the angle of inclination of the tube, resulted in 
a sphere Reynolds number (based on particle diameter and approach velocity) 
ranging from 80 to 250. The results are presented as curves which include the 
coefficients of lift and drag, and the dimensionless rotation speed plotted versus 
Reynolds number and a dimensionless shear parameter. 

Introduction 
We are concerned, in this paper, with the forces on spheres in a Poiseuille flow. 

The net force on such a sphere can be resolved into components along and normal 
to the direction of the approaching flow. We choose to term the former a drag 
force (F’) and the latter a lift force (27’). The lift force, not usually encountered 
in discussions of the flow about spheres, is a consequence of the velocity gradient 
and results from an asymmetric surface pressure distribution. 

In  the course of many years, much attention has been given to the theory of 
viscous flow about a sphere both in an unbounded medium and in media bounded 
by cylinder walls. Because of the complexity of the general Navier-Stokes 
equation, most of the theoretical approaches have assumed a very low Reynolds 
number. In  this regime the Navier-Stokes equation can be simplified to a linear, 
fourth-order, partial-differential equation. The first boundary condition imposed 
was that of a uniform unbounded flow (Lamb 1932) and then, later, flows within 
an infinitely long cylindrical tube were considered (Ladenburg 1907; Faxen 
1922; Lee 1947; Haberman & Sayre 1958). Finally, Poiseuille flows about a 
sphere in a cylinder have been treated (Haberman & Sayre 1958; Happel & 
Byrne 1954; Wakiya 1953; Brenner & Happel 1958). 

Analysis of the flow about spheres at very low Reynolds numbers allows the 
calculation of drag but not of lift, since the inertial effects, from which the lift 
must result, are neglected. The general procedure has been to present the results 
of bounded flows as a correction factor to the Stokes drag on a sphere in a uniform, 
unbounded flow. Attempts have also been made to calculate the drag when the 
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inertia terms have been partially accounted for; e.g. on the basis of the Oseen 
equation of flow. More recently, Rubinow & Keller (1961) have estimated the 
lift on a rotating sphere at small Reynolds numbers in'Poiseuille flow. 

Experimentally, the curve of drag coefficient versus Reynolds number for 
spheres in an unbounded fluid has been the object of continued attention for the 
Reynolds number range 10-1 < Re < lo6 (Perry 1950). For spheres bounded by 
cylinder walls, experiments have been chiefly of the sedimenting sphere variety 
(McNown, Lee, McPherson & Engez 1948; Fidleris & Whitmore 1961). Recently, 
Fayon & Happel (1 960) performed experiments in which a sphere was held fixed 
in a Poiseuillian flow at various distances from the axis. The flow was vertically 
upwards and the drag was measured. Their results yielded a semi-empirical 
equation for Re < 40. 

To the authors' knowledge, no direct experimental data for the lift forces on 
spheres in a velocity gradient at low Reynolds numbers have been reported 
heretofore, although such effects have been studied indirectly, as, for example, in 
the work of Young (1960) and Segr6 & Silverberg (1961, 1962a,b). The latter 
authors note a reversal in sign of the lift force such that spheres situated at a 
radius less than a certain value are forced outward while those beyond that 
radius are forced inward. Due to the high Reynolds numbers in the present 
study, a comparison of the results with those of Segr6 & Silverberg is probably 
not meaningful. 

Considerable work has been done on the problem of an inviscid flow with a 
velocity gradient about spheres and cylinders (Tsien 1943; Lighthill 1957; 
Zierep 1955; Hall 1956). Much of this work bears on the pitot-probe displacement 
problem. 

In  this paper, experimental measurements are presented of the lift, drag and 
speed of rotation of spheres in velocity gradients in a Reynolds number range 
beyond the Stokes r6gime. In  contrast to the work by Fayon & Happel (where 
the particle was held fixed in the flow), this experiment suspended particles 
freely, using the fluid dynamic forces to hold a particle at rest. 

Specifically, small spheres were suspended in a 0-419in. diameter tube con- 
taining a laminar upward flow of water. The tube was inclined to the vertical and 
the flow rate was adjusted to bring the sphere to rest at  a fixed distance from the 
tube wall. In  this position, the apparent weight of the sphere is balanced by the 
lift force toward the tube axis due to the velocity gradient (i.e. the asymmetrical 
pressure recovery) and the drag force due to the longitudinal flow. Thus, if the 
particle and fluid densities are known, as well as the tube inclination and radial 
position of the particle, the lift and drag forces can be determined. 

Description of apparatus 
The experiments were performed with the apparatus shown in figures 1 and 2. 

The principal element, a glass tube of internal diameter 0.419in. is shown in 
figure 1 and a line diagram of the flow system in figure 2. 

The glass tube in which the sphere suspension measurements were performed 
was 40 in. in length and was provided with entrance and exit sections 6 in. long 
and 2in. in diameter. The inlet (lower) section was carefully fused to the main 
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FIGURE 1. Tube and mounting arrangement in a vee-notch. 

515 

FIGURE 2. Line diagram of flow system: A, upper constant head tank; B, gate and needle 
valves in parrtllel; C, flowrator; D, tube; E, lower constant head tank; F, gear pump. 
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tube. A rounded entrance was provided. The exit (upper) section was supported 
by pins resting in a vee-notch. Rotation in a vertical plane was thus assured. 
The vertical alignment was continually checked with a transit. Spheres to be 
studied were introduced through a t in.  diameter tube fused into the exit section. 

In  order to avoid pressure fluctuations, constant-head tanks were installed to 
serve as the driving potential for the flow; a gear pump being used to return the 
flow to the upper tank. Coarse and fine adjustment of the mass flow was obtained 
by placing in parallel a 1 in. gate valve and a t in .  needle valve. The mass flow 
was measured by a rotameter (Fisher-Porter ' Flowrator ') which was first care- 
fully calibrated. 

The radial position of the particle and the angle of inclination of the tube were 
determined from photographs of a section of the tube. The tube angle was 
obtained by reference to a vertical nylon thread photographed along with the 
particle. The camera was a Polaroid Land type 110 A used with Type 3000 film. 
The speed of rotation was determined visually by counting a number of revolu- 
tions against a stop-watch. 

In  the design of the apparatus, consideration was given to tube size, flow rate 
and sphere diameter and weight. Operating characteristics were calculated 
approximately to insure that the tube Reynolds number would be small enough 
to avoid either incipient transition to turbulence or unduly long entrance lengths. 
A conservative estimate for the entrance length was deduced from the measure- 
ments of Nikuradse (Schlichting 1960), according to whom the entrance length 
L, in tube diameters can be estimated by the formula LJD = 0.06 Re,, where the 
Reynolds number is based on the mean flow velocity. In  all the measurements 
reported here, this criterion was satisfied. 

Experimental procedure 
The experimental procedure can be conveniently separated into three phases : 

(I) events prior to the test runs, (11) the test runs, and (111) the events succeeding 
the test runs. 

I. Prior to the test runs the properties of the particle were determined. With 
the use of a pyncnometer bottle and analytical balance, the specific gravity and 
diameter were measured. These results are shown in table 1. No special attempts 
to determine sphericity were made, but the spheres employed were selected after 
observation under magnification. 

11. Tests were conducted with four spheres composed of three different plastic 
materials. The tests were performed in the following way: beginning with the 
tube vertical, a particular particle was selected and introduced into the stream. 
Care was taken that no air was allowed to leak into the stream. Adjustment of 
the flow, via the control valves, brought the particle to rest. A photograph was 
taken and the flowrator and temperature readings were recorded. At this time, 
the rotation speed was determined. The mass flow was then increased sufficiently 
t o  suspend the sphere in the upper 2 in. diameter section while the tube was re-set 
at some desired angle of inclination. After checking the tube alignment, the mass 
flow was reduced and adjusted, again bringing the particle to rest in the test 
section. The procedure was repeated until the test series was complete. 
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111. The final phase of the experiment consisted of a study of the photographs; 
i.e. the determination of the angle of inclination and the radial displacement of 
the particle. Both were determined directly with the use of a magnifying glass 
and scale. The angle of inclination was determined by geometrical considerations 
as described in figure 3. The measured radial position was corrected for refraction 
effects using handbook values for the refractive indices of glass and water. 

(S 

.Tube 

12) 

Nylon . 
t h r e a d J  

FIGURE 3. Illustration of tube inclination measurement. 

Sphere Diameter Specific Symbol used 
no. (in.) gravity on graphs 
1 0.126 1.066 0 
2 0.094 1.258 V 
3 0-062 1.144 A 
4 0.061 1.426 0 

TABLE 1. Properties of the spheres. 

Following the experimental procedure as outlined, the basic data was obtained. 
These results are given in the Appendix and shown plotted in figures 4, and 
6 to 11 inclusive. 

Drag Discussion of results 

The drag of a sphere suspended in an inclined tube is merely the longitudinal 
component of the force required to keep the sphere motionless. Thus 

FD = W cos CI, 

where FD is the drag, W is the apparent weight of the sphere, and a is the angle 
of inclination of the tube. The drag coefficient is then 

CD = FD/(+pu2)lra2, (1) 

where u is the approach velocity toward the sphere centre. For a parabolic 
velocity-profile u = u0( 1 - p2), zco being the velocity at the tube centre-line, and 
p the non-dimensional radial displacement b/R. 

The drag coefficient versus the particle Reynolds number, Rep ,  based on 
approach velocity and sphere diameter, is shown in figure 4. For reference the 
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accepted curve for spheres in an unbounded medium (Perry 1950, p. 1018) is 
also shown. For each run, data are shown for an axially located particle and for 
particles of increasing displacement (i.e. increased tube inclination) up to the 
point where the sphere touches the wall. For greater tube inclinations, the 
sphere continually bumps against the wall. 

Since we are considering a case in which the sphere is at rest in a laboratory 
frame of reference, the drag coefficient can depend only on the Reynolds number, 
Re,, a dimensionless displacement, p, and the sphere to tube diameter ratio, d / B ,  
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, # I  0.5 ! I I I I , I  

Re, 
50 75 100 125 150 200 250 300 350400 

FIQURE 4. Drag coefficient vs particle Reynolds number: 0,  sphere no. 1 ; v, sphere 
no. 2; A, sphere no. 3; 0, sphere no. 4; -, sphere in unbounded medium (Perry 1950); 
_ _ _  , equation (3).  Not all data points are shown. 

To help interpret this relationship and thus the data in figure 4, the schematic 
representation of figure 5 has been prepared. In  figure 5 (a), the relationship of 
equation (2) to d/D is shown parametrically so that C, (Re,,P) is represented as 
a surface. A curve of C, us Re such as is shown in figure 4 results not only from 
the variation of C, with Re but also, and in this case primarily, with /3. This fact 
is illustrated in figure 5 (b ) ,  where the operating curve (line 1) of the apparatus 
as traced out on the C, (Be,,p) surface and projected (line 2 )  onto the (C,, Re,)- 
plane is shown. 

Consider the data represented by one value of dlD, say, for example, those 
given by v (runs 45 to 52) in figure 4. The calculated maximum error in C, for 
runs 45 and 48 was & 10 % and 5-17 yo, respectively. In  both cases, the maximum 
error in the Reynolds number was less than 5 %. These errors result from 
various uncertainties in the measurements, primarily sphere radius, sphere 
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density, tube radius, flow rate and sphere position. The first three listed sources 
of error, although perhaps random in origin, are systematic when one compares 
measurements made with a given sphere in a given tube. Thus, although the 

( b )  

FIGURE 5 .  Schematic diagram of the relation CD = cD(Re,, p, d/D). 0 Operating curve 
determined by system characteristics; Q projection of @ on (CD, Re,)-plane. 

absolute value of C, for run 48 cannot be certified to better than 17 yo, a large 
portion of this error becomes systematic when one compares C, for run 48 with 
that for run 45. In  considering the difference in drag coefficient even within a 
single set of data, one must sum the remaining random errors. For the above 
case this gives a maximum error of f 10 yo, which, although still quite high, is 
tolerable in the light of the large observed changes in drag coefficient. 
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The only previously published expression known to the authors for predicting 
the changes in drag coefficient is the semi-empirical formula of Fayon & Happel 
(1960), which can be written as 

2*105(d/D) - 2.087(d/D)3 - g( 1 -p  
cD = [ 1 - 2*105(d/D) + 2.087(d/D)3 

where C, is the drag coefficient for an unbounded sphere, and C, is the Stokes 
drag coefficient. The predictions resulting from the application of this formula 
are shown in figure 4. Fayon & Happel of course did not intend equation (3) to 
be used at Reynolds numbers as high as those encountered here, nor indeed for 
the case of a freely rotating sphere. However, equation (3) fails to predict the 
trend of the data because the coefficient of the term accounting for effects of 
/3 and d/D is the Stokes drag coefficient which decreases with Reynolds number 
much faster than does C,. In  fact, the variation of CD with Rep as calculated 
from (3) and shown in figure 4 is due almost entirely to changes in C, and hardly 
at all to changes in p. 

In  view of the present state of our theoretical knowledge, it seems best to 
attempt a direct correlation of the data. Returning to equation ( a ) ,  we will 
assume that the Reynolds number variation is of the power-law variety, so that 
( 2 )  can be written 

Then the drag coefficient where ,13 = 0 is given by 
cD = Regf((P,d/D)* 

cDO = R e g O f ( O ,  

From these two expressions, we can form the ratio 

The left-hand side of (4) is shown plotted against (1 - p2)-’ in figure 6. In  each 
case, the value of n used is that corresponding to the variation of C, in the centre 
of the appropriate Reynolds number range. From figure 6, it appears that the 
effect of variations with /3 are fairly well delineated and that the two lines shown 
have different slopes resulting from changes in d/D. The data for the two &in. 
spheres (nos. 3 and 4) fall on the same line even though the Reynolds numbers 
are different by a factor of two. A possible blemish on this correlation is indicated 
by the fact that no significant difference exists between the data for the & and 
&in. spheres (nos. 1 and 3). 

From figure 6 and equation (a), we can write the final result as 

where P(d/D) is the slope of a line of constant d /D in figure 6 .  
Unfortunately, the data are not sufficiently extensive or accurate to make 

definitive statements about the form of Renf(0, d /D) .  
The Fayon & Happel expression (3) predicts the drag coefficient for p = 0 

within the experimental uncertainty, and can be combined with (5), replacing 
the unknown function Regf(0, d/D).  
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Rotation 
In  the experiment described aljove, spherical particles were suspended, at 
increasing displacement, in a parabolic velocity field. If the particle is assumed 
to be a small fluid element and the flow is assumed to be viscous, then the rigid 
body rotation of such an element has the simple theoretical value of %(du/dy).  

1/(1 -PI 
FIGURE 6.  Drag-coefficient correlation. 

Consider figure 7 which shows a plot of the non-dimensional experimental 
angular velocity versus the non-dimensional shear. From dimensional analysis, 
one must anticipate a functional relationship of the form 

where we is the angular velocity of rotation and R is the tube radius. However, 
an inspection of the curves reveals that the spread between runs is a Reynolds 
number effect since the two runs at nearly the same Reynolds number, but 
different diameter ratios, are brought together when plotted this way. Based on 
this limited data, we would conclude that 

Next consider figure 8 in which we attempt to eliminate the Reynolds number 
effect by plotting (we R/PuO) Re, versus the dimensionless shear. Although some 

t As with the drag coefficient, the rotation coefficient must be a function of the variables 
Re,, d/D and p. However, since the rotation is intimately related to the presence of shear, 
we adopt instead the entirely equivalent set of parameters Re,, d/D and (d/u)du/dy, the 
latter being a non-dimensional shear parameter. The hope here is that the results will thus 
be more general. 
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systematical differences between the runs still exist, it  seems reasonable to 
postulate an equation of the form 

= (ReP)- l f  
PUO 
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P 
FIGURE 9. Lift coefficient va displacement from centre-line. 

For 0.4 < ( d / u )  (du ldy )  < 1.0, we have as a further, approximation 

weR/PuO N 32/Rep. (7) 

We note that the angular velocity decreases with increasing Reynolds number, 
which we would expect. It must be pointed out, however, that the above 
approximation has limited applicability since i t  predicts that the angular 
velocity would approach very large values as the Reynolds number becomes 
small. 

Li f t  

The lift force acting on a sphere in an inclined tube is the radial component of the 
force required to keep the sphere motionless. Thus, 

FL = W sin a, 
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where FL is the lift and the other variables remain as described earlier. In  a 
similar fashion the lift coefficient is then 

R. Eichhorn and 8. Small 

C, = FLl&pu2rra2. 

A dimensional analysis gives the relationship (see footnote on p. 9) 
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FIGURE 10. Lift coefficient va shear parameter. 

The following paragraphs will attempt to shed some light on the complicated 
relationships described by this formula. However, since i t  will be seen that the 
experimental data available contain a relatively high degree of scatter, we shall 
mainly attempt to obtain a relationship which is qualitative in nature, and in 
the process use arguments which tend to be somewhat intuitive. 

Figure 9 shows the coefficient of lift plotted against the dimensionless dis- 
placement /I. In  this figure the lift coefficients obtained when the particle bumped 
against the wall are plotted as solid symbols. The data plotted in this way fail 
to reveal any systematic trend either with diameter ratio or Reynolds number. 
This fact justifies, to an extent, our attention to the shear parameter (d lu)  (duldy). 
An attempt a t  correlation on this basis is shown in figure 10 where C, is plotted 



Spheres suspended in Poiseuille flow 525 

vs the shear parameter on log co-ordinates. Here again, no systematic trend with 
either diameter ratio or particle Reynolds number is revealed. However, we 
now note that the dependency of CL on ( d / u )  (duldy)  is nearly as the square of 
the latter. This clearly identifies the effect as inertial, since the rotation speed of 

1.0 

0.10 

0.010 -- 

0.00 1 

CL 

I 

-- 

-- 

A 

I I I I I 

u d y  $ & ( E l )  DRe,  

FIGURE 11. Correlation of lift coefficient. 

the particle is also related to the shear parameter (cf. figure 8 and equation (7)).  
In  fact, a plot of C, vs w,d/u reveals an even closer square dependency than that 
shown in figure 9. This being a relationship between two dependent variables, 
however, it  is not presented here. 

Closer examination of figure 10 shows that the effects of Reynolds number and 
diameter ratio work in opposite directions, i.e. CL decreases with increasing 
Reynolds number and increases with decreasing diameter ratio. The plot in 
figure 11 was prepared in an attempt to take these facts into account. The data 
appear to be brought together somewhat better than before, although it must 
be admitted that this may be fortuitous in view of the small number of cases 
represented. The line shown in the diagram was drawn by eye and is represented 
by the equation d d u  d 1 C, = 7 x  104 [(--) u d y  " R e p  --I . 
Only a tentative recommendation can be made for the formula. 
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A theoretical prediction by Rubinow & Keller (1961) shows C,K (d/u) du/dy 
in the Stokes-Oseen range. From the data presented here, it appears that the 
Rubinow & Keller prediction does not hold beyond the Stokes-Oseen r6gime. 

Conclusions 
A technique for determining the forces acting on spheres suspended in a 

laminar tube flow has been devised and tested. The results, although not exten- 
sive, provide new information about the drag on spheres in such flows and the 
first direct measurements known to the authors of lift forces resulting from a 
velocity gradient in the flow. 

The chief drawbacks of the technique are the extremely accurate measure- 
ments required (not entirely achieved in this study), and the fact that important 
variables (such as rotation speed and radial position) are related by the operating 
characteristics of the apparatus and thus cannot be varied independently by the 
experimenter. 

This work was sponsored by Project SQUID, which is supported by the Office 
of Naval Research, Department of the Navy, under Contract No. 3623(00), 
NR-098-038. Reproduction in full or in part is permitted for any use of the 
United States Government. 
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Appendix 
Run zl 

no. (ft./sec) 

35 0.164 
36 0.162 
37 0.158 
38 0.162 
39 0.156 
40 0.159 
41 0.149 
42 0.141 
43* 0.115 
44* 0.121 

45 0.315 
46 0.314 
47 0.289 
48 0.281 
49 0.270 
50 0.269 
51 0.268 
52* 0.270 

53 0.330 
54 0.322 
55 0.320 
56 0.320 
57 0-318 
58 0.316 
59 0.314 
60 0.312 
61 0.311 
62* 0.241 

63 0.168 
64 0.168 
65 0.167 
66 0.167 
67 0-165 
68 0.164 
69 0.160 
70 0-157 
71 0-154 
72* 0.151 

Re, 

157 
155 
151 
156 
150 
153 
144 
137 
233 
211 

247 
246 
226 
220 
212 
211 
210 
212 

169 
165 
164 
165 
164 
162 
162 
162 
161 
125 

89 
89 
99 
88 
87 
86 
84 
83 
81 
80 

a 
B (deg) 
Sphere no. 1 

0.00 0.00 
0.17 0.78 
0.29 1.87 
0.34 2.95 
0.42 4-03 
0.45 5.27 
0.56 6-30 
0.60 7.64 
0.69 18.4 
0.70 22.5 

Sphere no. 2 
0.00 0.00 
0.30 0.016 
0.51 0.47 
0.56 1-40 
0.60 3.27 
0-60 3.88 
0.61 5.43 
0.61 6.52 

Sphere no. 3 
0.00 0.00 
0.37 0.015 
0.56 0.62 
0.56 0.75 
0-59 0.94 
0.60 1.25 
0.66 1.55 
0.71 3.58 
0.72 5-01 
0.82 12-2 

Sphere no. 4 
0.00 0.00 
0.06 0.015 
0.29 0.62 
0-37 1.57 
0.50 2-18 
0.54 2.97 
0.60 4-00 
0.63 5-72 
0-73 10.8 
0.75 16.6 

0, 
(sec-1) 

0.00 
0.53 
0-69 
0.84 
0-96 
1.10 
1.27 
1-78 
4.19 
4.84 

0.00 

1.34 
1.48 
1.68 
1.96 
2.13 
2.52 

- 

0.00 
7.78 

12.4 
12.7 
13.5 
14.5 
17.3 
22.0 
26.4 
33.9 

0.00 
0.68 
3.22 
4.15 
6.36 
7.16 
8.66 
9.49 

13.9 
14.6 

O D  

1.10 
1.13 
1.19 
1.14 
1.21 
1.11 
1-33 
1-48 
2.12 
1.86 

0.87 
0.88 
1.04 
1.10 
1.10 
1-19 
1.20 
1.18 

0.86 
0.89 
0.91 
0.91 
0.92 
0.93 
0.94 
0.96 
0.95 
1.56 

1.13 
1.13 
1.14 
1.15 
1.18 
1.19 
1.26 
1.29 
1-33 
1-34 

627 

CL 

0.00 
0.017 
0.039 
0.058 
0-086 
0.103 
0.147 
0.250 
0-704 
0.773 

0.00 
0.002 
0.009 
0.027 
0.063 
0.081 
0.114 
0.135 

0.00 
0.002 
0.010 
0.012 
0.015 
0.020 
0.026 
0-060 
0.084 
0.338 

0.00 
0.003 
0.012 
0.028 
0.044 
0.052 
0-088 
0.129 
0.253 
0.401 

* Cases for which the sphere bumped against the tube wall. 




